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Evolution of networks with aging of sites
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We study the growth of a network with aging of sites. Each new site of the network is connected to some old
site with probability proportional~i! to the connectivity of the old site as in the Baraba´si-Albert’s model and
~ii ! to t2a, wheret is the age of the old site. We find both from simulation and analytically that the network
shows scaling behavior only in the regiona,1. Whena increases from2` to 0, the exponentg of the
distribution of connectivities@P(k)}k2g for largek] grows from 2 to the value for the network without aging.
The ensuing increase ofa to 1 causesg to grow to`. For a.1, the distributionP(k) is exponentional.

PACS number~s!: 05.10.2a, 05.40.2a, 05.50.1q, 87.18.Sn
th

o

p

o

s
d
is

io

it

tu
e

su
a
th
c
o
e
-

t

is

in
g

to

an

ly
the

r of

the

site
d.
The explosion of the general interest in the problem of
structure and evolution of most different networks@1–9# is
connected not only with the sudden understanding that
world is in fact a huge set of various networks~with the most
striking examples of Web and neural networks—see the
pers @4,6,10,11# and references therein! but also with the
recent finding that many networks obey scaling laws@2,7#.
For instance, the scaling behavior was found in the netw
of citations of scientific papers@1,2# in which each paper is a
site of the corresponding net and links are the reference
the cited papers. That was the reason to renew old stu
@12–15#. One may note also that the growth of networks
only a particular kind of fascinating growth processes@16–
18#.

A simple model of a network that shows scaling behav
was recently proposed by Baraba´si and Albert@7#. In their
network, each new site is connected with some old site w
probability proportional to its connectivityk. In this case, the
distribution of the connectivities in the large network~i.e.,
one of the most considerable characteristics of the struc
and evolution of networks! shows a power-law dependenc
P(k)}k2g with the exponentg53.

However, in real reference networks, aging of sites u
ally occurs: however, we rarely cite old papers. One m
ask, how does the structure of the network change if
aging of sites is introduced, i.e., if the probability of conne
tion of the new site with some old one is proportional n
only to the connectivity of the old site but also to the pow
of its age,t2a, for example?@Of course, more rapidly de
creasing functions, e.g., the exponential one, exp(2const
3t), are included in the particular case ofa→`.# This
question is quite reasonable: indeed, Fig. 1 demonstrates
the structure of the network depends obviously ona. We
show below both numerically and analytically that th
change is dramatic: the scaling disappears whena.1
~hence, it is absent also for any more rapidly decreas
function than a power one!, and the exponents of the scalin
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laws depend strongly ona in the rangea,1. This result
could not be foreseen: the scaling is very sensitive
changes of the model. For example, as it is noted in@7#, the
scaling disappears if the probability of the connection to
old site is proportional toke, eÞ1.

Here, we consider exclusively the network, in which on
one extra link appears when the new site is added, since
results for the exponents do not depend on the numbe
links which are added each time@7#.

FIG. 1. Change of the network structure with increase of
aging exponenta. The aging is proportional tot2a, wheret is the
age of the site. The network grows clockwise starting from the
below on the left. Each time one new site with one link is adde
1842 ©2000 The American Physical Society
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Let us start from the simulation, which turns out to
easy for the problem under consideration because we s
only the characteristics dependent on the connectivity. T
are ~i! the distribution of connectivities in the networ
P(k,t) in the instantt ~only one site is in the network att
50, and one more site is added in each instant! and ~ii ! the
mean connectivityk̄(s,t) of the sites (0,s,t) in the in-
stant t, i.e., the local density of the connectivities. If one
interested only in these quantities, there is no need to ke
matrix of connections in memory, and the simulation is ve
fast.

The results of the numerics are shown in Figs. 2–5.
though only the regiona>0 seems to be of real significanc
we consider also negative values ofa since they do not lead
to any contradiction. One may see clearly from the figu
that P(k,t)}k2g for large k and k̄(s,t)}s2b for small s,
whereb is the other scaling exponent, only fora,1. As it
should be, we get the valuesg53 andb5 1

2 for a50 @7#.
Note that, at 0,a,1, the deviations of the dependen
log10 P(k) versus log10 k for small k are stronger, as in the
real reference network@2#, than those ata50. At a.1,
P(k) turns to be exponential, and the mean connectiv
tends to be constant at larges. Thus, whilea changes from 0
to 1, g grows from 3 tò , andb decreases from1

2 to 0. One
sees from Fig. 3 that for positivea the log10 P(k) versus

FIG. 2. Mean connectivity vs numbers of the site for several
values of the aging exponenta: curve 1,a50; curve 2,a50.25;
curve 3,a50.5; curve 4,a52.0. The network size ist510 000.

FIG. 3. Distribution of the connectivities for several values
the aging exponent: curve 1,a50; curve 2,a50.25; curve 3,a
50.5; curve 4,a50.75. The inset shows log10 P(k) vs k for a
51, 5, and 10. Note that, in the latter case, all three curves
nearly the same.
dy
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log10 k dependence looks more curved than those fora50
as in the real reference network@2#.

The simulations demonstrate also thatg has a tendency to
decrease from 3 to 2, andb to grow from 1

2 to 1 whena
decreases from 0 to2`.

Let us show now how these results may be descri
analytically. We introduce the average connectivityk̄(s,t) of
the sites at the momentt. If we assume that a continuou
approximation is applicable@7#, then the introduced rules o
the network evolution lead to the following equation:

] k̄~s,t !

]t
5

k̄~s,t !~ t2s!2a

E
0

t

du k̄~u,t !~ t2u!2a

, k̄~ t,t !51. ~1!

Here, the boundary condition means that only one link
added each time.

One may check that Eq.~1! is consistent. Let us apply
*0

t ds to it. Then,

re

FIG. 4. Exponentb of the mean connectivity vs aging expone
a. Points are obtained from the simulations. The line is the solu
of Eq. ~9!. The inset shows the analytical solution in the rang
25,a,1. Note thatb→1 if a→2`.

FIG. 5. Exponentg of the connectivity distribution vs aging
exponenta. The points show the results of the simulations. The l
is the solution of Eq.~9! with account taken for Eq.~10!. The inset
depicts the analytical solution in the range25,a,1.
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E
0

t

ds
] k̄~s,t !

]t
5

]

]tE0

t

ds k̄~s,t !2 k̄~ t,t !51, ~2!

and we get immediately the proper relation

E
0

t

ds k̄~s,t !52t, ~3!

i.e., the sum of connectivities equals the doubled numbe
links in the network.

We search for the solution of Eq.~1! in the scaling form,

k̄~s,t ![k~s/t !, s/t[j, ~4!

which is consistent also with Eq.~3!. Then Eq.~1! becomes

2j~12j!a
d ln k~j!

dj
5F E

0

1

dzk~z!~12z!2aG21

[b,

~5!

k~1!51,

whereb is a constant, which is unknown yet. We shall s
soon that this constant is the exponent of the mean con
tivity. Equations~3! and ~4! give the relation*0

1dzk(z)52.
The solution of Eq.~5! is

k~j!5B expF2bE dj

j~12j!aG , ~6!

whereB is a constant. The indefinite integral in Eq.~6! may
be taken:

E dj

j~12j!a
5 ln j1 (

k50

`
1

k! ~k11!2

3a~a11!•••~a1k!jk11

5 ln j1a 3F2~1,1,11a;2,2;j!, ~7!

where 3F2( , , ; , ; ) is the hypergeometric function
@19#. Recalling the boundary conditionk(1)51, we find the
constantB. Thus the solution is

k~j!5e2b„C1c(12a)…j2b

3exp@2baj 3F2~1,1,11a;2,2;j!#, ~8!

whereC50.5772 . . . isEuler’s constant andc( ) is thec
function. Now we see that the constantb is indeed the ex-
ponent of mean connectivity, sincek(j);j2b if j→0. The
transcendental equation forb may be written if one substi
tutes Eq.~8! into the right side of Eq.~5!:
of

c-

b215e2b„C1c(12a)…E
0

1 dz

zb~12z!a

3exp@2baz 3F2~1,1,11a;2,2;z!#, ~9!

which is our main equation.
Before we shall find the solution of Eq.~9!, we have to

note that the exponentsb andg are related by the following
universal relation:

b~g21!51. ~10!

We do not present the derivation of Eq.~10! here. It may be
obtained@20# if one assumes only that the average conn
tivity and distribution of connectivities show scaling beha
ior and uses the definitions of these quantities and a u
normalization condition for probabilities.

The solution of Eq.~9! exists in the range2`,a,1.
The results of the numerical solution are shown in Fig.
One may also findb(a) andg(a) at a→0:

b>
1

2
2~12 ln 2!a, g>314~12 ln 2!a, ~11!

where the numerical values of the coefficients are 12 ln 2
50.3069 . . . and 4(12 ln 2)51.2274 . . . . Weused the re-
lation 3F2(1,1,1;2,2;z)5Li2(z)/z[((k51

` zk/k2)/z while
deriving Eq.~11!. Here, Li2( ) is the polylogarithm function
of order 2@19#.

In the limit of a→1, using the relation
3F2(1,1,2;2,2;z)52 ln(12z)/z, we find

b>c1~12a!, g>
1

c1

1

12a
. ~12!

Here, c150.8065 . . . ,c1
2151.2400 . . . : the constantc1 is

the solution of the equation 111/c15exp(c1). Note also that
b→1 andg→2 in the limit a→2`.

One sees from Fig. 5 that the results of the simulation a
of the analytical calculations are in quantative corresp
dence. Deviations may be noticed only in regions wh
simulations cannot provide sufficient precision. In fact, t
used continuous limit corresponds to the following appro
mation:p(k,s,t)'d„k2 k̄(s,t)…, wherep(k,s,t) is the prob-
ability that the connectivity of the sites at time t is equal to
k. Note that Eq.~1! provides us easily with all known result
on scale-free networks.

One may imagine from Fig. 1 that the pointa51 (b
→0 and g→`) at which the scaling collapses marks th
transition from the multidimensional network fora,1 to the
chain structure. Figure 1 demonstrates also that, in the
of a→2` (b→1 andg→2), all sites of the network are
connected with the oldest one. The behavior of the con
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ered quantities near these points evokes associations wit
lower and higher critical dimensions in the theory of usu
phase transitions@21#.

There are some possibilities to change the exponent
the network without aging of sites@7,20#. One may check
that, in these cases, the range of variation of the exponenb
andg whena changes from2` to 1 is the same as in th
present paper.

In summary, we have considered the reference netw
with the power-law (t2a) aging of sites. We have foun
both from our simulations and using the effective-mediu
approach that the network shows scaling behavior only in
region a,1. We have calculated the exponents of t
power-law dependences of the distribution of connectivit
J.

-

the
l

of

rk

e

s

P(k,t)}k2g and of mean connectivityk̄(s,t)}s2b and have
shown that they depend crucially ona.

The following questions remain open. Is our unprov
idea about the nature of the threshold pointa51 reasonable?
Do the analogies with the lower and higher critical dime
sions exist indeed? What other quantities of the netw
demonstrate the scaling behavior?

S.N.D. thanks PRAXIS XXI~Portugal! for a research
grant PRAXIS XXI/BCC/16418/98. J.F.F.M. was partial
supported by the projects PRAXIS/2/2.1/FIS/299/94. W
also thank E. J. S. Lage for reading the manuscript and A
Goltsev, S. Redner, and A. N. Samukhin for many use
discussions.
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