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Evolution of networks with aging of sites
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We study the growth of a network with aging of sites. Each new site of the network is connected to some old
site with probability proportionafi) to the connectivity of the old site as in the BarabAlbert's model and
(i) to 7~ ¢, wherer is the age of the old site. We find both from simulation and analytically that the network
shows scaling behavior only in the regian<1. Whena increases from-« to 0, the exponeny of the
distribution of connectivitiefP (k) k™ for largek] grows from 2 to the value for the network without aging.
The ensuing increase of to 1 causesy to grow tos. For a>1, the distributionP (k) is exponentional.

PACS numbs(s): 05.10—-a, 05.40--a, 05.50+q, 87.18.Sn

The explosion of the general interest in the problem of thdaws depend strongly oa in the rangea<<1. This result
structure and evolution of most different netwofds-9] is  could not be foreseen: the scaling is very sensitive to
connected not only with the sudden understanding that outhanges of the model. For example, as it is notef7inthe
world is in fact a huge set of various networfegith the most ~ scaling disappears if the probability of the connection to an
striking examples of Web and neural networks—see the paeld site is proportional &<, e# 1.
pers[4,6,10,11 and references thergirbut also with the Here, we consider exclusively the network, in which only
recent finding that many networks obey scaling I§&].  ©One extra link appears when the new site is added, since the
For instance, the scaling behavior was found in the networkesults for the exponents do not depend on the number of
of citations of scientific papefd,2] in which each paper is a ks which are added each tinfé].
site of the corresponding net and links are the references to
the cited papers. That was the reason to renew old studies
[12-15. One may note also that the growth of networks is
only a particular kind of fascinating growth proces$&6—

18].

A simple model of a network that shows scaling behavior
was recently proposed by Baraand Albert[7]. In their
network, each new site is connected with some old site with
probability proportional to its connectiviti In this case, the
distribution of the connectivities in the large netwdile.,
one of the most considerable characteristics of the structure
and evolution of networksshows a power-law dependence
P(k)ock™ 7 with the exponenty=3.

However, in real reference networks, aging of sites usu-
ally occurs: however, we rarely cite old papers. One may
ask, how does the structure of the network change if the
aging of sites is introduced, i.e., if the probability of connec-
tion of the new site with some old one is proportional not
only to the connectivity of the old site but also to the power
of its age, 7 ¢, for exampled Of course, more rapidly de-
creasing functions, e.g., the exponential one, exunst
X 1), are included in the particular case af—.] This
guestion is quite reasonable: indeed, Fig. 1 demonstrates that
the structure of the network depends obviously @enWe
show below both numerically and analytically that this
change is dramatic: the scaling disappears whenl
(hence, it is absent also for any more rapidly decreasing
function than a power ongand the exponents of the scaling

o=2.0 o=10.0

FIG. 1. Change of the network structure with increase of the
aging exponentr. The aging is proportional te™ ¢, wherer is the
*Electronic address: sdorogov@fc.up.pt age of the site. The network grows clockwise starting from the site
Electronic address: jfmendes@fc.up.pt below on the left. Each time one new site with one link is added.
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FIG. 2. Mean connectivity vs numberof the site for several 0_0'5 0 05 1
values of the aging exponent curve 1,a=0; curve 2,a=0.25; a

curve 3,a=0.5; curve 4,0=2.0. The network size is=10 000.
FIG. 4. Exponen of the mean connectivity vs aging exponent
. . . «. Points are obtained from the simulations. The line is the solution
Let us start from the simulation, which turns out to be

. . f Eq. (9). The inset shows the analytical solution in the range
easy for the problem under consideration because we stud_)y5<a<1. Note thatB— 1 if a——o.
only the characteristics dependent on the connectivity. They
are (i) the distribution of connectivities in the network
P(k,t) in the instantt (only one site is in the network at 10910 k dependence looks more curved than thoseadfer0
—0, and one more site is added in each ingtand (ii) the s in the real reference netwai].
mean connectivit;}?(s,t) of the sites (0<s<t) in the in- The simulations demonstrate also thdbas a tendency to

1
stantt, i.e., the local density of the connectivities. If one is decrease from 3 to 2, andl to grow from; to 1 whena

interested only in these quantities, there is no need to keequ\ecreases from O te-co.

matrix of connections in memory, and the simulation is very Let. us show -now how these results may .b_.e described
fast. analytically. We introduce the average connectikifg,t) of

The results of the numerics are shown in Figs. 2—5. Al-the sites at the moment. If we assume that a continuous
though only the regiom=0 seems to be of real significance, @PProximation is applicablr], then the introduced rules of
we consider also negative valuesmsince they do not lead the network evolution lead to the following equation:
to any contradiction. One may see clearly from the figures
that P(k,_t)ocl(7 for Iargg k and k(s,t)xs # for small S, k(s 1) K(s,t)(t—s)~@
where 8 is the other scaling exponent, only far<1. As it =
should be, we get the valugs=3 andgB=3 for a=0 [7].
Note that, at 8<a<1, the deviations of the dependence
log;o P(K) versus logg k for small k are stronger, as in the
real reference network?], than those aiw=0. At a>1, . L
P(k) turns to be exponential, and the mean connectivit;ﬂere’ the boyndary condition means that only one link is
tends to be constant at largeThus, whilea changes from 0 added each time.

to 1, y grows from 3 to, and decreases frorh to 0. One t(;)ne _mzﬁly_/hcheck that Eq1) is consistent. Let us apply
sees from Fig. 3 that for positiva the logg P(k) versus Jodsto it. Then,

ot , k(t,h)=1. Q)

ftdu?(u,t)(t—u)*“
0

2 ,
log ok 2 1 0 1
. . . . . (x
FIG. 3. Distribution of the connectivities for several values of

the aging exponent: curve k=0; curve 2,a=0.25; curve 3« FIG. 5. Exponenty of the connectivity distribution vs aging
=0.5; curve 4,a=0.75. The inset shows legP (k) vs k for « exponentx. The points show the results of the simulations. The line
=1, 5, and 10. Note that, in the latter case, all three curves arés the solution of Eq(9) with account taken for Eq10). The inset
nearly the same. depicts the analytical solution in the rangeb<a<<1.
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ak(s,t) _

stk(st) ktH=1, (2

t
st
0

and we get immediately the proper relation

ftdsT<(s,t)=2t, 3
0
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Xexd — Bal 3Fo(1,1,1+ «;2,2;0)], (9)

which is our main equation.

Before we shall find the solution of E9), we have to
note that the exponenj and y are related by the following
universal relation:

i.e., the sum of connectivities equals the doubled number of

links in the network.
We search for the solution of E{L) in the scaling form,

K(s,t)=k(slt), slt=&, (4)

which is consistent also with E¢3). Then Eq.(1) becomes

1

—&(1- é)“ “ déx(H)(1-0)" “} =B,

©)

k(1)=1,

B(y—1)=1 (10

We do not present the derivation of E40) here. It may be
obtained[20] if one assumes only that the average connec-
tivity and distribution of connectivities show scaling behav-
ior and uses the definitions of these quantities and a usual
normalization condition for probabilities.

The solution of Eq.(9) exists in the range-w<a<1.
The results of the numerical solution are shown in Fig. 5.
One may also fingB(a) and y(a) at a—0:

BE%—(l—'” 2)a, y=3+4(1-h2)a,  (11)

where B is a constant, which is unknown yet. We shall see
soon that this constant is the exponent of the mean connec-

tivity. Equations(3) and (4) give the relation/ 3 odlk()=2.
The solution of Eq(5) is

d
K(g):BeXp[_Bf f(l—étg)a]’

whereB is a constant. The indefinite integral in E§) may
be taken:

(6)

)

e B e
§(1-9“ k‘(k+1)2
Xa(a+1) - (a+k)grt
=Iné+asF,(1,1,1+ @;2,2;¢), (7)
where ;F5( , , ; , ; ) is the hypergeometric function

[19]. Recalling the boundary condition(1)=1, we find the
constantB. Thus the solution is

k(§)=e PCHIl-a)g=p

Xexg — BaésFy(1,1,1+«;2,2;6)], (8

whereC=0.5772 . .. isEuler's constant ang/( ) is the
function. Now we see that the constahtis indeed the ex-
ponent of mean connectivity, sineg &)~ & A if £—-0. The
transcendental equation f@ may be written if one substi-
tutes Eq.(8) into the right side of Eq(5):

where the numerical values of the coefficients arelri2
=0.30® ... and 4(+In2)=1.2274 ... . Weused the re-
lation 3F,(1,1,1;2,2¢)=Liy(¢)/{=(Sx_1LK?) ¢ while
deriving Eq.(11). Here, Lp( ) is the polylogarithm function
of order 2[19].

In  the limit of a—1, using the relation
3F2(1,1,2;2,27) = —In(1— )/, we find
1- t 1 12
p=cyl-a), y= . (12
Here,c;=0.806 ... C; 1=1.24®...: theconstantc, is

the solution of the equation-11/c; =exp(c;). Note also that
B—1 andy—2 in the limit a— — 0.

One sees from Fig. 5 that the results of the simulation and
of the analytical calculations are in quantative correspon-
dence. Deviations may be noticed only in regions where
simulations cannot provide sufficient precision. In fact, the
used continuous limit corresponds to the following approxi-
mation:p(k,s,t)~ 8(k—k(s,t)), wherep(k,s,t) is the prob-
ability that the connectivity of the siteat timet is equal to
k. Note that Eq(1) provides us easily with all known results
on scale-free networks.

One may imagine from Fig. 1 that the poiat=1 (B
—0 and y—) at which the scaling collapses marks the
transition from the multidimensional network far<1 to the
chain structure. Figure 1 demonstrates also that, in the case
of a——o (B—1 andy—2), all sites of the network are
connected with the oldest one. The behavior of the consid-
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ered quantities near these points evokes associations with tipgk t)ock = and of mean connectivitig(s,t) s~ # and have
lower and higher critical dimensions in the theory of usualghown that they depend crucially an

phase transitionf21]. The following questions remain open. Is our unproved

There are some possibilities to change the exponents Gfia anout the nature of the threshold paist 1 reasonable?
the network without aging of site)7,20]. One may check Do the analogies with the lower and higher critical dimen-

g‘na(}’ 'nwtﬁgr‘:‘e C;S;r?'ézefrr;?giootfovirﬁ“t%gcg;;iixspﬁfhnets sions exist indeed? What other quantities of the network
Y @ g demonstrate the scaling behavior?

present paper.

In summary, we have considered the reference network S.N.D. thanks PRAXIS XXI(Portugal for a research
with the power-law ¢~ ) aging of sites. We have found grant PRAXIS XXI/BCC/16418/98. J.F.F.M. was partially
both from our simulations and using the effective-mediumsupported by the projects PRAXIS/2/2.1/FIS/299/94. We
approach that the network shows scaling behavior only in thalso thank E. J. S. Lage for reading the manuscript and A. V.
region «<1l. We have calculated the exponents of theGoltsev, S. Redner, and A. N. Samukhin for many useful
power-law dependences of the distribution of connectivitiegliscussions.
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